
SHRIMATI INDIRA GANDHI COLLEGE

Affiliated to Bharathidasan University| Nationally Accredited at ‘A’ Grade(3rd Cycle) by NAAC

An ISO 9001:2015 Certified Institution

Thiruchirrappalli

STUDY MATERIAL

SOFTWARE ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE,

INFORMATION TECHNOLOGY AND

COMPUTER APPLICATIONS

Prepared by,

MS.T.R.B.VIDHYA, M.S.I.T.,M.Phil.,M.C.A.,

ASST. PROF. IN COMPUTER SCIENCE,

SHRIMATI INDIRA GANDHI COLLEGE,

TIRUCHIRAPPALLI - 2

Software Engineering

Unit I
Introduction to Software Engineering: Definitions-Size Factors – Quality and Productivity
Factors. Planning a Software Project: Planning the Development Process – Planning an
Organizational Structure.

Unit II
Software Cost Estimation: Software cost Factors – Software Cost Estimation
Techniques –Staffing-Level Estimation – Estimating Software Estimation Costs.

Unit III
Software Requirements Definition: The Software Requirements specification – Formal
Specification Techniques. Software Design: Fundamental Design Concepts – Modules
and Modularization Criteria.

Unit IV
Design Notations – Design Techniques. Implementation Issues: Structured Coding
Techniques – Coding Style – Standards and Guidelines – Documentation Guidelines.

Unit V
Verification and Validation Techniques: Quality Assurance – Walkthroughs and
Inspections
Unit Testing and Debugging – System Testing. Software Maintenance: Enhancing
Maintainability during Development – Managerial Aspects of Software Maintenance –
Configuration Management.

Textbook:
1. Software Engineering Concepts – Richard Fairley, 1997, Tata Mcgraw Hill.
Reference Books:
1. Software Engineering for Internet Applications – Eve Anderson, Philip Greenspun,
Andrew Grumet, 2006, PHI.
2. Fundamentals of Software Engineering – Rajib Mall, 2nd Edition, PHI
3. Software Engineering – Stephen Schach, 7th edition, TMH.

UNIT:1

Software Engineering is the subdiscipline of Computer Science that attempts to

apply engineering principles to the creation, operation, modification and

maintenance of the software components of various systems. As with much of

Computer Science, the subject of Software Engineering is at an very early stage

in its development. It is much more of an art than a science, and at present has

little in common which classical engineering.

The water fall model

There are two essential steps common to the development of computer programs:

analysis and coding.

Both involve creative work that directly contributes to the usefulness of the end

product.

 In order to manage and control all of the intellectual freedom associated with software

development, one must introduce several other ‘overhead’ steps, including system

requirements definition, software requirements definition, program design, and testing.

These steps supplement the analysis and coding steps.”

 Waterfall model phases

 Requirements analysis and definition

 System and software design

 Implementation and unit testing

 Integration and system testing

 Operation and maintenance

 The drawback of the waterfall model is the difficulty of

accommodating change after the process is underway

Coding

Analysi

Planning

Analysis

Design

Build

Test
Deploy

Waterfall model problems

 Inflexible partitioning of the project into distinct stages

 This makes it difficult to respond to changing customer

requirements

 Therefore, this model is only appropriate when the requirements

are well-understood

Pros: Cons:

Easiest to understand Does not model the real world

Easiest to instrument Too much documentation

Enforced discipline

Document and deliverable driven

Suggested Changes ‘Then’ and ‘Now’

Point 1. “Program design” comes first.

 Program designer looks at storage, timing, data. Very high level…First

glimpse. First concepts…

 During analysis: program designer must then impose storage, timing, and

operational constraints to determine consequences.

 Begin design process with program designers, not analysts and programmers

 Design, define, and allocate data processing modes even if wrong. (allocate

functions, database design, interfacing, processing modes, i/o processing, operating

procedures…. Even if wrong!!)

 Build an overview document – to gain a basic understanding of system for all

stakeholders.

Point 2: Document the Design

 Development efforts required huge amounts of documentation – manuals for

everything

 User manuals; operation manuals, program maintenance manuals, staff user

manuals, test manuals…

 Most of us would like to ‘ignore’ documentation.

 Each designer MUST communicate with various stakeholders: interface designers,

managers, customers, testers, developers, …..

Point 3: Do it twice.

 History argues that the delivered version is really version #2Version 1, major

problems and alternatives are addressed – the ‘big cookies’ such as

communications, interfacing, data modeling, platforms, operational constraints,

other constraints. Plan to throw first version away sometimes…

 Version 2, is a refinement of version 1 where the major requirements are

implemented.

 Version 1 often austere; Version 2 addressed shortcomings!

Point 4: Then: Plan, Control, and Monitor Testing.

 Largest consumer of project resources (manpower, computing time, …) is the test

phase.

 Phase of greatest risk – in terms of cost and schedule.

 Occurs last, when alternatives are least available, and expenses are at a

maximum.

 Typically that phase that is shortchanged the most

 To do:

 1. Employ a non-vested team of test specialists – not responsible for

original design.

 2. Employ visual inspections to spot obvious errors (code reviews, other

technical reviews and interfaces)

 3. Test every logic path

 4. Employ final checkout on target computer…..

Point 5 – Old: Involve the Customer

Old advice: involve customer in requirements definition, preliminary software

review, preliminary program design (critical design review briefings…)

Now: Involving the customer and all stakeholders is critical to overall project

success. Demonstrate increments; solicit feedback; embrace change; cyclic and

iterative and evolving software. Address risk early…..

The Conventional Software Management Performance

Finding and fixing a software problem after delivery costs 100 times more than finding and

fixing the problem in early design phases.

a. You can compress software development schedules 25% of nominal, but no more.

b. For every $1 you spend on development, you will spend $2 on maintenance.

c. Software development and maintenance costs are primarily a function of the number

of source lines of code.

d. Variations among people account for the biggest differences in software productivity.

e. The overall ratio of software to hardware costs is still growing. In 1955 it was 15:85;

in 1985, 85:15.

f. Only about 15% of software development effort is devoted to programming.

g. Walkthroughs catch 60% of the errors.

h. 80% of the contribution comes from 20% of contributors

The basic parameters of the software cost models

Most software cost models can be abstracted into a function of five basic

parameters:

a. Size of the end product which is typically quantified in terms of the number of

source instructions or the function points required to develop the required

functionality

b. Process used to produce the end product and to avoid non-value adding

activities like rework, communication overhead.

c. Personnel particularly their experience with the computer science issues and

the applications domain issues of the project.

d. Environment which is made up of the tools and techniques available to support

efficient software development and to automate process.

e. Quality of the product, including its performance, reliability, and adaptability.

The relationship among these parameters and the estimated cost can be written

as follows;:

Effort=(Personnel)(Environment)(quality)(size Process)

The figure following shows three generations of basic technology

advancement in topls, components and process. Thre requited levels of quality and

personnel are assumed to be constant. The ordinate of the graph refers to software

unit costs like SLOC,Function Point, and component realized by an organization.

 The three generations of software development are defined as folows:

Conventional: 1960s and 1970s craftmanship. Organization used custom tools,

custom process, and virtually all custom components built in primitive languages.

Transition: 1980s and 1990s, software engineering. Organizations used more-

repeatable process and off-the-shelf tools and mostly >70% custom components

buits in higer level languages. Some of the components <30% were available as

commercial products, including the operating system , database management

system, networking and graphical user interface.

Modern Pracices: 2000 and late, software production. In this mostly 70% off-the-

shelf components perhaps as few as 30% of the components need to be custom

built. With advances in software technology and integrated production

environments, thse components-based systems can be produced very rapidly.

 Three generations of software economics:

The predominant cost estimation process

 A good estimate has the following attributes:

Cost

Software size
1960s-1970s
Waterfall model

Functional design

1980s-1990s
Process improvement
Encapsulation-based

2000 and on
Iterative development

Component- based

Environments/tools:
Custom

Size:
100% custom
Process:
Ad hoc

Environments/tools:
Off-the-shelf, separate

Size:
30%component-based, 70% custom
Process:

Repeatable

Environments/tools:
Off-the-shelf, integrated

Size:
70%component-based, 30% custom

Process:
Managed/measured

Typical project performance

Predictably bad
Always:
-Over budget

Unpredictable
Infrequently:
-On budget

Predictable
Usually:
-On budget

Software manager,

software architecture manager,

software development manager,
software assessment manager

Cost estimate

Cost modelers

Risks, options,

trade-offs,

alternatives

 It is conceived and supported by the project manager, architecture team,

development team, and test team accountable for performing the work.

 It is accepted by all stakeholders as ambitious but realizable.

 It is based on a well defined software cost model with a credible basis.

 It is based on a database of relevant project experience that includes similar

processes, technologies, environments, quality requirements, and people.

It is defined in enough detail so that its key risk areas are understood and the

probability of success is objectively assessed.

 To improve the software economics

Five basic parameters of the software cost model:

1. Reducing the size or complexity of what needs to be developed

2. Improving the development process

3. Using more-skilled personnel and better teams

4. Using better environments

5. Trading off or backing off on quality thresholds

1. Reducing Software Product Size

“The most significant way to improve affordability and return on investment

is usually to produce a product that achieves the design goals with the minimum

amount of human-generated source material.”

Reuse, object-oriented technology, automatic code production, and higher

order programming languages are all focused on achieving a given system with

fewer lines of human-specified source directives.

UFP -Universal Function Points

The basic units of the function points are external user inputs, external

outputs, internal logic data groups, external data interfaces, and external

inquiries.

SLOC metrics

Are useful estimators for software after a candidate solution is formulated

and an implementation language is known

Reducing Software Product Size: Object Oriented

 A ruthless focus on the development of a system that provides a well understood

collection of essential minimal characteristics.

 The existence of a culture that is centered on results, encourages communication, but yet

is not afraid to fail.

 The effective use of object-oriented modeling

 The existence of a strong architectural vision

 The application of a well-managed and incremental development life cycle

Reducing Software Product Size – Reuse

 Most truly reusable components of value are transitioned to commercial products

supported by organizations with the following characteristics:

 They have an economic motivation for continued support

 They take ownership of improving product quality, adding new features, and

transitioning to new technologies

 They have a sufficiently broad customer base to be profitable.

Reducing Software Product Size – Commercial Components

16/112

Size

Abstraction and component

based development technologies

Higher order languages
(C++, Java, Visual Basic, etc.)

Object-oriented

Process

Methods and techniques

Iterative development

Process maturity models
Architecture-first development

Personnel
People factors

Training and personnel

skill development

Teamwork

Environment
Automation technologies and tools

Integrated tools

(Visual modeling, compiler, editor, etc)

Open systems
Quality

Performance, reliability, accuracy

Hardware platform performance
Demonstration-based assessment

Statistical quality control

APPROACH ADVANTAGES DISADVANTAGES

Commercial

components

Predictable license costs

Broadly used, mature

technology

Available now

Dedicated support organization

Hardware/software

independence

Rich in functionality

Frequent upgrades

Up-front license fees

Recurring maintenance fees

Dependency on vendor

Run-time efficiency sacrifices

Functionality constraints

Integration not always trivial

No control over upgrades and maintenance

Unnecessary features that consume extra resources

Often inadequate reliability and stability

Multiple-vendor incompatibility

Custom

development

Complete change freedom

Smaller, often simpler

implementations

Often better performance

Control of development and

enhancement

Expensive, unpredictable development

Unpredictable availability date

Undefined maintenance model

Often immature and fragile

Single-platform dependency

Drain on expert resources

2. Improving Software Processes

Process is an overloaded term. There are three distinct process perspectives.

f. Meta process: An Organization’s policies, procedures and practices for

pursuing a software-intensive line of business

g. Macro Process: a project’s policies, procedures, and practices for producing a

complete software product within certain cost, schedule, and quality

constraints.

h. Micro process: a project team’s policies, procedures, and practices for

achieving an artifact of the software process.

Three levels of processes and their attributes

Attributes Metaprocess Macroprocess Microprocess

Subject Line of business Project Iteration

Objectives Line-of-business

profitability

Competitiveness

Project profitability

Risk management

Project budget, schedule,

quality

Resource management

Risk resolution

Milestone budget,

schedule, quality

Audience Acquisition authorities,

customers

Organizational

management

Software project managers

Software engineers

Subproject managers

Software engineers

Metrics Project predictability

Revenue, market share

On budget, on schedule

Major milestone success

Project scrap and rework

On budget, on schedule

Major milestone progress

Release/iteration scrap

and rework

Concerns Bureaucracy vs.

standardization

Quality vs. financial

performance

Content vs. schedule

Time scales 6 to 12 months 1 to many years 1 to 6 months

3. Improving Team Effectiveness

Some rules of team management include the following:

a. A well managed project can succeed with a nominal engineering team.

b. A mismanaged project will almost never succeed, even with an expert team of

engineers.

c. A well architected system can be built by a nominal team of software builders.

d. A poorly architected system will flounder even with an expert team of

builders.

In examining how to staff a software project, Boehm offered the following five staffing

principles:

 The principle of top talent: Use better and fewer people.

 The principle of job matching: Fit the task to the skills an motivation of the people

available.

 The principle of career progression: An organization does best in the long run by

helping its people to self-actualize.

 The principle of team balance: Select people who will complement and harmonize with

one another.

 The principle of phase-out: Keeping a misfit on the team doesn’t benefit anyone.

The following are some attributes of successful software project managers that

deserve much more attention (Important Project Manager Skills):

o Hiring skills. Few decisions are as important as hiring decisions. Placing the right

person in the right job seems obvious but is surprisingly hard to achieve.

o Customer-interface skill. Avoiding adversarial relationships among stake-holders is a

prerequisite for success.

o Decision-making skill. The jillion books written about management have failed to

provide a clear definition of this attribute. We all know a good leader when we run into

one, and decision-making skill seems obvious despite its intangible definition.

o Team-building skill. Teamwork requires that a manager establish trust, motivate

progress, exploit eccentric prima donnas, transition average people into top performers,

eliminate misfits, and consolidate diverse opinions into a team direction.

o Selling skill. Successful project managers must sell all stakeholders (including

themselves) on decisions and priorities, sell candidates on job positions, sell changes

to the status quo in the face of resistance, and sell achievements against objectives. In

practice, selling requires continuous negotiation, compromise, and empathy

4. Achieving Required Quality

Key practices that improve overall software quality:

 Focusing on driving requirements and critical use cases early in the life cycle, focusing on

requirements completeness and traceability late in the life cycle, and focusing throughout

the life cycle on a balance between requirements evolution, design evolution, and plan

evolution

 Using metrics and indicators to measure the progress and quality of an architecture as it

evolves from a high-level prototype into a fully compliant product

 Providing integrated life-cycle environments that support early and continuous

configuration control, change management, rigorous design methods, document

automation, and regression test automation

 Using visual modeling and higher level language that support architectural control,

abstraction, reliable programming, reuse, and self-documentation

 Early and continuous insight into performance issues through demonstration-based

evaluations

The Principles of Conventional Software Engineering

1. Make quality #1. Quality must be quantified and mechanism put into place to

motivate its achievement.

2. High-quality software is possible. Techniques that have been demonstrated to

increase quality include involving the customer, prototyping, simplifying design,

conducting inspections, and hiring the best people.

3. Give products to customers early. No matter how hard you try to learn users’

needs during the requirements phase, the most effective way to determine real needs

is to give users a product and let them play with it.

4. Determine the problem before writing the requirements. When faced with what

they believe is a problem, most engineers rush to offer a solution. Before you try to

solve a problem, be sure to explore all the alternatives and don’t be blinded by the

obvious solution.

5. Evaluate design alternatives. After the requirements are agreed upon, you must

examine a variety of architectures and algorithms. You certainly do not want to use

an “architecture” simply because it was used in the requirements specification.

6. Use an appropriate process model. Each project must select a process that makes

the most sense for that project on the basis of corporate culture, willingness to take

risks, application area, volatility of requirements, and the extent to which

requirements are well understood.

7. Use different languages for different phases. Our industry’s eternal thirst for

simple solutions to complex problems has driven many to declare that the best

development method is one that uses the same notation through-out the life cycle.

Why should software engineers use Ada for requirements, design, and code unless

Ada were optimal for all these phases?

8. Minimize intellectual distance. To minimize intellectual distance, the software’s

structure should be as close as possible to the real-world structure.

9. Put techniques before tools. An undisciplined software engineer with a tool

becomes a dangerous, undisciplined software engineer.

10. Get it right before you make it faster. It is far easier to make a working program

run than it is to make a fast program work. Don’t worry about optimization during

initial coding.

11. Inspect code. Inspecting the detailed design and code is a much better way to find

errors than testing.

12. Good management is more important than good technology. The best

technology will not compensate for poor management, and a good manager can

produce great results even with meager resources. Good management motivates

people to do their best, but there are no universal “right” styles of management.

13. People are the key to success. Highly skilled people with appropriate experience,

talent, and training are key. The right people with insufficient tools, languages, and

process will succeed. The wrong people with appropriate tools, languages, and

process will probably fail.

14. Follow with care. Just because everybody is doing something does not make it

right for you. It may be right, but you must carefully assess its applicability to your

environment. Object orientation, measurement, reuse, process improvement,

CASE, prototyping-all these might increase quality, decrease cost, and increase

user satisfaction. The potential of such techniques is often oversold, and benefits

are by no means guaranteed or universal.

15. Take responsibility. When a bridge collapses we ask, “what did the engineers do

wrong?” Even when software fails, we rarely ask this. The fact is that in any

engineering discipline, the best methods can be used to produce awful designs, and

the most antiquated methods to produce elegant design.

16. Understand the customer’s priorities. It is possible the customer would tolerate

90% of the functionality delivered late if they could have 10% of it on time.

17. The more they see, the more they need. The more functionality (or performance)

you provide a user, the more functionality (or performance) the user wants.

18. Plan to throw one away .One of the most important critical success factors is

whether or not a product is entirely new. Such brand-new applications,

architectures, interfaces, or algorithms rarely work the first time.

19. Design for change. The architectures, components, and specification techniques

you use must accommodate change.

20. Design without documentation is not design. I have often heard software

engineers say, “I have finished the design. All that is left is the documentation.”

21. Use tools, but be realistic. Software tools make their users more efficient.

22. Avoid tricks. Many programmers love to create programs with tricks- constructs

that perform a function correctly, but in an obscure way. Show the world how smart

you are by avoiding tricky code.

23. Encapsulate. Information-hiding is a simple, proven concept that results in

software that is easier to test and much easier to maintain.

24. Use coupling and cohesion. Coupling and cohesion are the best ways to measure

software’s inherent maintainability and adaptability.

25. Use the McCabe complexity measure. Although there are many metrics available

to report the inherent complexity of software, none is as intuitive and easy to use

as Tom McCabe’s.

26. Don’t test your own software. Software developers should never be the primary

testers of their own software.

27. Analyze causes for errors. It is far more cost-effective to reduce the effect of an

error by preventing it than it is to find and fix it. One way to do this is to analyze

the causes of errors as they are detected.

28. Realize that software’s entropy increases. Any software system that undergoes

continuous change will grow in complexity and become more and more

disorganized.

29. People and time are not interchangeable. Measuring a project solely by person-

months makes little sense.

30. Expert excellence. Your employees will do much better if you have high

expectations for them.

The Principles of Modern Software Management

Top ten principles:

1. Base the process on an architecture-first approach: The architecturally

significant

design decisions, and the life cycle plans before the resources are committed

for full scale development.

2. Establish an iterative life-cycle process: Today’s sophisticated software

systems, it is not possible to define the entire problem, design the entire

solution, build the software, the test the end product in sequence. An

iterative process that refines the problem understanding, an effective

solution, and an effective plan over several iterations encourages a balanced

treatment to all objectives.

3. Component based development: A component is a cohesive set of

preexisting lines of code, either in source or executable format, with a

defined interface and behavior.

4. Change management environment: The dynamic of iterative

development, including concurrent workflows by different teams working

on shared artifacts, necessitates objectively controlled baselines.

5. Round trip engineering: it is the environment support necessary to

automate and synchronize engineering information in different formats.

Change freedom a necessity in an iterative process, and establishing an

integrated environment is crucial.

6. Model based notation: A model based approach supports the evolution of

semantically rich graphical and textual design notations

7. Objective quality control: It is the best assessment mechanisms are well

defined measures derived directly from the evolving engineering

8. Demonstration based approach: transitioning the current state of the

product artifacts into an executable demonstration of relevant scenarios

stimulates earlier convergence on integration

9. Evolving levels of detail: the evolution of project increments and

generations must be commensurate with the current level of understanding

f the requirements and architecture.

10. Configurable process: No single process is suitable for all software

developments. A pragmatic process framework must be configurable to a

broad spectrum of applications.

UNIT-II

1. The Life cycle phases

The central design Architecture-first approach

Design and integration first, then production
The risk management

element
Iterative life-cycle process

Risk control through ever-increasing function,
The technology element Component-based development

Object-oriented methods, rigorous
The control element Change management environment

Metrics, trends, process instrumentation
The automation element Round-trip engineering

Complementary tools, integrated

Waterfall Process
Requirements first
Custom development
Change avoidance
Ad hoc tools

 Iterative Process
Architecture first
Component based development
Change management
Round-trip engineering

The following are the two stages of the life-cycle:

 The engineering stage – driven by smaller teams doing design and synthesis activities

 The production stage – driven by larger teams doing construction, test, and

deployment activities

LIFE-CYCLE

ASPECT

ENGINEERING STAGE

EMPHASIS

PRODUCTION STAGE

EMPHASIS

Risk reduction Schedule, technical feasibility Cost

Products Architecture baseline Product release baselines

Activities Analysis, design, planning Implementation, testing

Assessment Demonstration, inspection, analysis Testing

Economics Resolving diseconomies of scale Exploiting economics of scale

Management Planning Operations

The engineering stage is decomposed into two distinct phases, inception and elaboration, and

the production stage into construction and transition. These four phases of the life-cycle process

are loosely mapped to the conceptual framework of the spiral model.

The size of the spiral model corresponds to the inertia of the project with respect to the breadth

and depth of the artifacts that have been developed.

In most conventional life cycles, the phases are named after the primary activity within each phase:

requirements analysis, design, coding, unit test, integration test, and system test. Conventional

Engineering Stage Production Stage

Inception Elaboration Construction Transition

Idea Architecture Beta Releases Products

software development efforts emphasized a mostly sequential process, in which one activity was

required to be complete before the next was begun.

Within an iterative process, each phase includes all the activities, in varying proportions.

Inception Phase:

 Overriding goal of the inception phase is to achieve concurrence among stakeholders on the

life-cycle objectives

 Essential activities :

 Formulating the scope of the project (capturing the requirements and operational

concept in an information repository)

 Synthesizing the architecture (design trade-offs, problem space ambiguities, and

available solution-space assets are evaluated)

 Planning and preparing a business case (alternatives for risk management,

iteration planes, and cost/schedule/profitability trade-offs are evaluated)

Elaboration Phase:

It is easy to argue that the elaboration phase is the most critical of the four phases. At the end of

this phase, the “engineering “is considered complete and the project faces its reckoning. During

the elaboration phase, an executable architecture prototype is built in one or more iterations,

depending on the scope, size, risk and novelty of the project.

 Essential activities :

 Elaborating the vision (establishing a high-fidelity understanding of the critical use cases

that drive architectural or planning decisions)

 Elaborating the process and infrastructure (establishing the construction process, the tools

and process automation support)

 Elaborating the architecture and selecting components (lessons learned from these

activities may result in redesign of the architecture)

Construction Phase:

 During the construction phase :

 All remaining components and application features are integrated into the application

 All features are thoroughly tested

 Essential activities :

 Resource management, control, and process optimization

 Complete component development and testing against evaluation criteria

 Assessment of the product releases against acceptance criteria of the vision

Transition Phase:

 The transition phase is entered when baseline is mature enough to be deployed in the end-

user domain. This phase could include beta testing, conversion of operational databases,

and training of users and maintainers.

 Essential activities :

 Synchronization and integration of concurrent construction into consistent

deployment baselines

 Deployment-specific engineering (commercial packaging and production, field

personnel training)

 Assessment of deployment baselines against the complete vision and acceptance

criteria in the requirements set

Evaluation Criteria:

 Is the user satisfied?

 Are actual resource expenditures versus planned expenditures acceptable?

 Each of the four phases consists of one or more iterations in which some technical

capability is produced in demonstrable form and assessed against a set of the criteria.

 The transition from one phase to the nest maps more to a significant business decision than

to the completion of specific software activity.

A set represents a complete aspect of the system, an artifact represents cohesive information

that typically is developed and reviewed as a single entity.

Life – cycle software artifacts are organized into five distinct sets that are roughly partitioned

by the underlying language of the set: management, requirements, design, implementation, and

deployment.

Management set:

The Management set captures the artifacts associated with process planning and execution.

Management artifacts are evaluated, assessed and measured through a combination of the

following:

a. Relevant stakeholder reviews

b. Analysis of changes between the current version of the artifact and previous versions

c. Major milestone demonstrations of the balance among all artifacts and in particular, the

accuracy of the business case and vision artifacts.

The Engineering Sets:

 The engineering sets consist of the requirements set, the design setk the implementation

set, and the deployment set.

Management artifacts:

The management set includes several artifacts

 Work Breakdown Structure – vehicle for budgeting and collecting

 costs. The software project manager must have insight into project costs

 and how they are expended. If the WBS is structured improperly, it can drive the evolving

design in the wrong direction.

 Business Case – provides all the information necessary to determine whether the project

is worth investing in. It details the expected revenue, expected cost, technical and

management plans.

Release Specifications

Typical release specification outline :

Two important forms of requirements:

 Vision statement - which captures the contract between the development group and the

buyer.

 Evaluation criteria – defined as management-oriented requirements, which may be

represented by use cases, use case realizations or structured text representations.

 Software Development Plan – the defining document for the project’s process. It must

comply with the contract, comply with the organization standards, evolve along with the

design and requirements.

 Deployment – depending on the project, it could include several document subsets for

transitioning the product into operational status. It could also include computer system

operations manuals, software installation manuals, plans and procedures for cutover etc.

 Environment – A robust development environment must support automation of the

development process. It should include :

 requirements management

 visual modeling

I. Iteration content

II. Measurable objectives

 A. Evaluation criteria

 B. Follow-through approach

III. Demonstration plan
 A. Schedule of activities

 B. Team responsibilities

IV. Operational scenarios (use cases

demonstrated)
 A. Demonstration procedures

 B. Traceability to vision and business case

 document automation

 automated regression testing

Engineering Artifacts:

 In general review, there are three engineering artifacts

 Vision document – supports the contract between the funding authority and

 the development organization.

 It is written from the user’s perspective, focusing on the essential features

 of the system.

 It should contain at least two appendixes – the first appendix should describe the operational

concept using use cases, the second should describe the change risks inherent in the vision

statement.

 Architecture Description – it is extracted from the design model and includes views of

the design, implementation, and deployment sets sufficient to understand how the

operational concept of the requirements set will be achieved.

Typical architecture description outline :

 Software User Manual – it should include installation procedures, usage procedures and

guidance, operational constraints, and a user interface description.

I. Architecture overview

 A. Objectives

 B. Constraints

 C. Freedoms
II. Architecture views

 A. Design view

 B. Process view

 C. Component view

 D. Deployment view

III. Architectural interactions

 A. Operational concept under primary scenarios

 B. Operational concept under secondary scenarios

 C. Operational concept under anomalous scenarios

IV. Architecture performance
V. Rationale, trade-offs, and other substantiation

 It should be written by members of the test team, who are more likely to understand the

user’s perspective than the development team.

 It also provides a necessary basis for test plans and test cases, and for construction of

automated test suites.

Architecture in the management perspective view

From a management perspective, there are three different aspects of an architecture :

 An architecture (the intangible design concept) is the design of software system, as

opposed to design of a component.

 An architecture baseline (the tangible artifacts) is a slice of information across the

engineering artifact sets sufficient to satisfy all stakeholders that the vision can be achieved

within the parameters of the business case (cost, profit, time, people).

 An architecture description (a human-readable representation of an architecture) is an

organizes subsets of information extracted from the design set model.

The importance of software architecture can be summarized as follows:

 Achieving a stable software architecture represents a significant project milestone at which

the critical make/buy decisions should have been resolved.

 Architecture representations provide a basis for balancing the trade-offs between the

problem space and the solution space.

 The architecture and process encapsulate many of the important communications among

individuals, teams, organizations, and stakeholders.

 Poor architectures and immature processes are often given as reasons for project failures.

 A mature process, an understanding of the primary requirements, and a demonstrable

architecture are important prerequisites for predictable planning.

 Architecture development and process definition are the intellectual steps that map the

problem to a solution without violating the constraints.

Architecture in the technical perspective view

An architecture framework is defined in terms of views that are abstractions of the UML

models in the design set. The design model includes the full breadth and depth of information.

An architecture view is an abstraction of the design model, it contains only the architecturally

significant information.

Most real world systems require four views: design, process, component, and deployment. The

purposes of these views are as follows:

 Design: describes architecturally significant structures and functions of the design

model.

 Process: describes concurrency and control thread relationships among the design

components, and deployment views.

 Component: describes the structure of the implementation set.

 Deployment: describes the structure of the deployment set.

 The use case view describes how the system’s critical use cases are realized by elements

of the design model. It is modeled statically using case diagrams, and dynamically using

any of the UML behavioral diagrams. The design view addresses the basic structure and

the functionality of the solution.

 The process view addresses the run-time collaboration issues involved in executing the

architecture on a distributed deployment model, including the logical software network

topology, interprocess communicationand state management.

 The component view describes the architecturally significant elements of the

implementation set and addresses the software source code realization of the system from

perspective of the project's integrators and developers.

 The deployment view addresses the executable realization of the system, including the

allocation of logical processes in the distribution view to physical resources of the

deployment network.

Generally an architecture baseline should include the following:

An architecture is described through several views,

which are extracts of design models that capture the
significant structures, collaborations, and behaviors.

Architec

ture

Descripti

on

Docume

nt

Design view

Process view

Use case view

Component view

Deployment view

Other views (optional)

Design

 View
Process

 View

Component

 View

Deployment

 View

Use

Case

View

The model which draws on the foundation of architecture

developed at Rational Software Corporation and particularly

on Philippe Kruchten’s concepts of software architecture :

 Requirements: critical use cases, system level quality objectives, and

priority relationship among features and qualities

 Design: names, attributes, structures, behaviors, groupings and

relationships of significant classes and components

 Implementation: source component inventory and bill of materials (number,

name, purpose, cost) of all primitive components

 Deployment: executable components sufficient to demonstrate the critical

use cases and the risk associated with achieving the system qualities

Work flow and software process workflows

The term workflow is used to mean a thread of cohesive and mostly sequential activities.

Workflows are mapped to product artifacts. There are seven top level workflows:

1. Management workflow: Controlling the process and ensuring with conditions for all

stakeholders

2. Environment workflow: automating the process and evolving the maintenance

environment

3. Requirements workflow: analyzing the problem space and evolving the requirements

artifacts.

4. Design workflow: modeling the solution and evolving the architecture and esign

artifacts

5. Implementation workflow: programming the components and evolving the

implementation and deployment artifacts

6. Assessment workflow: assessing the trends in process and product quality

7. Deployment workflow: transitioning the end products to the user

Four basic key principles of the modern process frame work:

1. Architecture-first approach: implementing and testing the architecture must precede full-

scale development and testing and must precede the downstream focus on completeness

and quality of the product features.

2. Iterative life-cycle process: the activities and artifacts of any given workflow may require

more than one pass to achieve adequate results.

3. Roundtrip engineering: Raising the environment activities to a first-class workflow is

critical; the environment is the tangible embodiment of the project’s process and notations

for producing the artifacts.

4. Demonstration-based approach: Implementation and assessment activities are initiated

nearly in the life-cycle, reflecting the emphasis on constructing executable subsets of the

involving architecture.

The iteration workflows of the software process

Iteration consists of sequential set of activities in various proportions, depending on where

the iteration is located in the development cycle. Each iteration is defined in terms of a se

t of allocated usage scenarios. The components needed to implement all selected scenarios

are developed and integrated with the results of previous iterations. An individual

iteration’s workflow illustrated in the following sequence:

 Management: Iteration planning to determine the content of the release and develop

the detailed plan for the iteration, assignment of work packages, or tasks, to the

development team.

 Environment: evolving the software change order database to reflect all new

baselines and changes to existing baselines for all product, test and environment

components

 Requirements: analyzing the baseline plan, the baseline architecture, and the

baseline requirements set artifacts to fully elaborate the use cases to the

demonstrated at the end of the iteration and their evaluation criteria.

 Design: Evolving the baseline architecture ad the baseline design set artifacts to

elaborate fully the design model and test model components necessary to

demonstrate against the evolution criteria allocated to this iteration.

 Implementation: developing any new components, and enhancing or modifying any

existing components, to demonstrate the evolution criteria allocated to this iteration

 Assessment: evaluating the results of the iteration, including compliance with the

allocated evaluation criteria and the quality of the current baselines; indentifying

 Management

 Requirements

 Design

Implementation

Assessment

Deploy

ment

Results for the next

iteration

Allocated
usage scenarios

Results from the

Previous iteration

any rework required and determining whether it should be performed before

deployment of this release or allocated to the next release.

 Deployment: transitioning the released either to an external organization or to

internal closure by conducting a post mortem so that lessons learned can be

captured and reflected in the next iteration.

The following is an example of a simple development life cycle, illustrates the difference

between iterations and increments. This example also illustrates a typical build sequence

from the perspective of an abstract layered architecture.

Iteration emphasis across the life cycle

It is important to have visible milestones in the life cycle , where various stakeholders meet

to discuss progress and planes. The purpose of this events is to:

 Synchronize stakeholder expectations and achieve concurrence on the requirements, the

design, and the plan.

 Synchronize related artifacts into a consistent and balanced state.

 Synchronize related artifacts into a consistent and balanced state Identify the important

risks, issues, and out-of-tolerance conditions.

 Perform a global assessment for the whole life-cycle.

Three types of joint management reviews are conducted throughout the process:

 Management
 Requirements

 Design
Implementation

Assessment

Deployment

 Management
 Requirements

 Design
Implementation

 Assessment
Deployment

Management

Requirements

 Design

Implementation

 Assessment
 Deployment

Inception and Elaboration Phases Construction Phase

Transition Phase

1. Major milestones –provide visibility to system wide issues, synchronize the management

and engineering perspectives and verify that the aims of the phase have been achieved.

2. Minor milestones – iteration-focused events, conducted to review the content of iteration

in detail and to authorize continued work.

3. Status assessments – periodic events provide management with frequent and regular

insight into the progress being made.

MAJOR MILESTONES:

The four major milestones occur at the transition points between life-cycle phases. They

can be used in many different process models, including the conventional waterfall model.

In an iterative model, the major milestones are used to achieve concurrence among all

stakeholders on the current state of the project. Different stakeholders have very different

concerns:

 Customers: schedule and budget estimates, feasibility , risk assessment,

requirements understanding, progress, product line compatibility

 Users: consistency with requirements and usage scenarios, potential for

accommodating growth, quality attributes.

 Architectures and systems engineers: product line compatibility, requirements

changes, tradeoff analyses, completeness and consistency, balance among risk,

quality, and usability.

 Developers: sufficiency of requirements detail and usuage scenario descriptions,

frameworks for component selection of development, resolution of development

risk, sufficiency of the development environment

 Maintainers: sufficiency of product and documentation artifacts, understandability,

interoperability with existing systems, sufficiency of maintenance environment.

 Others: possibly many other perspectives by stakeholders such as regulatory

agencies, independent verification and validation contractors, venture capital

investors, subcontractors, associate contractors, and sales and marketing teams.

The milestones may be conducted as one continuous meeting of all concerned parties or

incrementally through mostly on-line review of the various artifacts. There are considerable

differences in the levels of ceremony for these events depending on several factors.

The essence of each major milestone is to ensure that the requirements understanding, the life-

cycle plans, and the product’s form, function, and quality are evolving in balanced levels of detail

and to ensure consistency among the various artifacts. The following table summarizes the balance

of information across the major milestones.

MINOR MILESTONES:

All iterations are not created equal. An iteration can take on very different forms and priorities,

depending on where the project is in the life cycle. Early iterations focus on analysis and design

with substantial elements of discovery, experimentation, and risk assessment. Later iterations

focus much more on completeness, consistency, usability, and change management.

 Iteration readiness review: this informal milestone is conducted at the start of each

iteration to review the detailed iteration plan the evolution criteria that have been allocated

to this iteration.

 Iteration Assessment review: this informal milestone is conducted at the end of each

iteration to assess the degree of which the iteration achieved its objectives and satisfied its

evaluation criteria, to review iteration achieved its objectives and satisfied its evaluation

criteria, to review iteration results, to review qualification test results, to determine the

amount of rework to be done, and to review the impact of the iteration results on the plan

for subsequent iterations.

PERIODIC STATUS ASSESSMENTS:

 Periodic stats assessments are management reviews conducted at regular intervals to

address progress and quality indicators, ensure continuous attention to project dynamics, and

maintain open communications among all stakeholders.

Status assessments provide the following:

 A mechanism for openly addressing, communicating, and resolving management issues,

technical issues, and project risks

 Objective data directly from on-going activities and evolving product configurations

 A mechanism for disseminating process, progress quality trends, practices and experience

information to and from all stakeholders in an open forum.

The default content of periodic status assessments should include the topics indentified in

the following table.

UNIT – III & UNIT- IV

 A WBS is simply a hierarchy of elements that decomposes the project plan into the discrete

work tasks. A WBS provides the following information structure:

 A delineation of all significant work

 A clear task decomposition for assignment of responsibilities

 A framework for scheduling, budgeting, and expenditure tracking.

 The development of a work breakdown structure is dependent on the project management

style, organizational culture, customer preference, financial constraints and several other

hard-to-define parameters.

I. Conventional WBS Issues:

Conventional WBS frequently suffer from three fundamental flaws:

1. Conventional WBS are prematurely structured around the product design:

The figure following shows the typical conventional WBS that has been

structured primarily around subsystems of its product architecture, the further

decomposed into the components of each subsystem.

Once this structure is ingrained in the WBS and then allocated to

responsible managers with budgets, schedules and expected deliverables, a

concrete planning foundation has been set that is difficult and expensive to change.

(SCAN FIG1)

2. Conventional WBS are prematurely decomposed, planned, and budgeted in wither too

much or too little detail:

Large software projects tend to be over planned and small projects tend to be under

planned. The WBS shown in the above figure is overly simplistic for most large scale

systems, where size or more levels of WBS elements are commonplace.

3. Conventional WBS are project-specific, and cross-project comparisons are usually

difficult or impossible:

Most organizations allow individual projects to define their own project-specific

structure tailored to the project manager’s style, the customer’s demands, or other project-

specific preferences.

It is extremely difficult to compare plans, financial data, schedule data, organizational

efficiencies, cost trends, productivity tends, or quality tends across multiple projects.

Some of the following simple questions, which are critical to any organizational

process improvement program, cannot be answered by most project teams that use

conventional WBS.

o What is the ratio of productive activities to overhead activities?

o What is the percentage of effort expanded in rework activities?

o What is the percentage of cost expended in software capital equipment

o What is the ration of productive testing versus integration?

o What is the cost of release?

II. Evolutionary Work Breakdown Structures:

 An evolutionary WBS should organize the planning elements around the process

framework rather than the product framework. The basic recommendation for the WBS is to

organize the hierarchy as follows:

 First level WBS elements are the workflows(Management, environment, requirement,

design, implementation, assessment, and deployment)

 Second level elements are defined for each phase of the life cycle(inceptions, elaboration,

construction and transition)

 Third level elements are defined for the focus of activities that produce the artifacts of each

phase.

A default WBS consistent with the process framework (phases, workflows, and

artifacts) is shown in the following figure

The structure shown is intended to be merely a starting point. It needs to be tailored

to the specifics of a project in many ways.

 Scale: Larger projects will have more levels and substructures.

 Organizational structure: projects that include subcontractors or span

multiple organizational entities may introduce constraints that necessitate

different WBS allocations.

 Degree of custom development: depending on the character of the project

there can be very different emphases in the requirements, design, and

implementation workflows. A business process re-engineering project

based primarily on existing components would have much more depth in

the requirements elements and a fairly shallow design and implementation

element.

 Business context: contractual projects require much more elaborate

management and assessment elements. Projects developing commercial

products for delivery to a board customer base may require much more

elaborate substructures for the deployment element.

 Precedent experience: very few projects start with a clean state. Most of

them are developed as new generations of a legacy system or in the context

of existing organizational standards. It is important to accommodate these

constraints to ensure that new projects exploit the existing experience base

and benchmarks of project performance.

 Planning guidelines

 Software projects span a board range of application domains. It is valuable but risky to

make specific planning recommendations independent of project context.

 Project independent planning advice is also risky. There is the risk that the guidelines may

be adopted blindly without being adapted to specific project circumstances. There is also the risk

of misinterpretation.

 Two simple planning guidelines should be considered when a project plan is being initiated

or assessed.

 The first guideline prescribes a default allocation of costs among the first-level

WBS elements.

 The second guideline prescribes the allocation of effort and schedule across the life

cycle phases.

Given an initial estimate of total project cost and these two tables, developing a staffing

profile, and allocation of staff resources to reams, a top-level project schedule, and an

initial WBS with task budgets and schedules is relatively straightforward.

FIRST-LEVEL

WBS ELEMENT

DEFAULT

BUDGET

Management 10%

Environment 10%

Requirements 10%

Design 15%

Implementation 25%

Assessment 25%

Deployment 5%

Total 100%

The first guideline prescribes a default allocation of costs among the first-level WBS elements

The above table provides default allocations for budgeted costs of each first-level WBS

element. While these values are certain to vary across projects, this allocation provides a good

benchmark for assessing the plan by understanding the rationale for deviations from these

guidelines. An important point here is that this is cost allocation, not effort allocation. To avoid

misinterpretation two explanations are necessary

1. The cost of different labor categories is inherent in these numbers

2. The cost of hardware and software assets that support the process automation and

development teams is also included in the environment element.

DOMAIN INCEPTION ELABORATION CONSTRUCTION TRANSITION

Effort 5% 20% 65% 10%

Schedule 10% 30% 50% 10%

The second guideline prescribes the allocation of effort and schedule across the life-cycle phases

The above table provides guidelines for allocating effort and schedule across the life cycle

phases. Although these values can also vary widely depending on the specific constraints of an

application, they provide an average expectation across a spectrum of application domains.

The cost and schedule estimating process

Project plans need to be derived from two perspectives.

 The first is a forward-looking top-down approach. It starts with as understanding of the

general requirements and constraints, derives a macro –level budgets and intermediate milestones

.

Forward-looking:

1. The software project manager develops a characterization of the overall size, process,

environment, people, and quality required for the project

2. A macro-level estimate of the total effort and schedule is developed using a software

cost estimation model

3. The software project manager partitions the estimate for the effort into a top-level WBS,

also partitions the schedule into major milestone dates and partitions the effort into a

staffing profile

4. At this point, subproject managers are given the responsibility for decomposing each of

the WBS elements into lower levels using their top-level allocation, staffing profile, and

major milestone dates as constraints.

The second perspective is a backward-looking, bottom-up approach. We start with

the end in mind, analyze the micro-level budgets and schedules, the sum all these elements

into the higher level budgets and intermediate milestones.

Backward-looking:

1. The lowest level WBS elements are elaborated into detailed tasks, for which budgets

and schedules are estimated by the responsible WBS element manager.

2. Estimates are combined and integrated into higher level budgets and milestones.

3. Comparisons are made with the top-down budgets and schedule milestones. Gross

differences are assessed and adjustments are made in order to converge on agreement

between the top-down and the bottom-up estimates.

These two planning approaches should be used together, in balance, throughout the life

cycle of the project. During the engineering stage, the top-down perspective will dominate. During

the production stage, these should be enough precedent experience and planning fidelity that the

bottom up planning perspective will dominate.

 By then, the top-down approach should be well tuned to the project specific parameters, so

is should be used more as a global assessment technique. The following figure shows this life cycle

planning balance.

The types of project organizations have

Line of Business Organizations:

 Maps roles and responsibilities to a default line-of-business organization. This structure

can be tailored to specific circumstances.

The main features of the default organization are as follows:

 Responsibility for process definition and maintenance is specific toa cohensive line

of business where process commonality makes sense. For example the process of

developing avionics software is different from the process used to develop office

applications.

 Engineering stage
 planning emphasis:

 Macro-level task

estimation for

production-stage

artifacts
 Micro-level task

estimation for

engineering
artifacts

 Stakeholder

concurrence
 Coarse-grained

variance analysis of

actual vs. planned

expenditures
 Tuning the top-

down project-

independent
planning guidelines

into project-specific

planning guidelines.

 Production stage

 planning emphasis:

 Micro-level task

estimation for

production-stage

artifacts
 Macro-level task

estimation for

engineering

artifacts
 Stakeholder

concurrence
 Fine-grained

variance analysis of

actual vs. planned

expenditures

Feasibility iterations Architecture iterations Usable iterations Product releases

 Responsibility for process automation, is an organizational role and its equal in

importance to the process definition role.

 Organizational role may be fulfilled by a single individual or several different

teams, depending on the scale of the organization.

Software Engineering Process Authority:

 The Software Engineering Process Authority (SEPA) facilitates the exchange of

information and process guidance both to and from project practitioners. The SEBA must help

initiate and periodically assess project process. The SEBA is necessary role in any organization.

The SEBA could be a single individual, the general manager, or even a team of representatives.

The SEBA must truly be an authority, competent and powerful.

Project Review Authority:

 The project review authority (PRA) is the single individual responsible for ensuring that a

software project complies with all organizational and business unit software policies, practices,

and standards. The PRA reviews both the project’s conformance to contractual obligations and the

project’s organizational policy obligations. The customer monitors contract requirements, contract

milestones, contract deliverable, monthly management reviews, progress, quality, cost, schedule

and risk. The PRA reviews customer commitments as well as adherence to organizational policies,

organizational deliverables, and financial performance and other risks and accomplishments.

Software Engineering Environment Authority:

 The Software Engineering Environment Authority (SEEA) is responsible for automating

the organizations process, maintaining the organizations standard environment, training project to

use environment, and maintain organization-wide reusable assets. The SEEA rule is necessary to

achieve significant return on investment for a common process.

Project A

Manager

Project B

Manager

Project N

Manager

Organization

ManagerSoftware Engineering
Process Authority

Software Engineering
Environment Authority

Project Review
Authority

Infrastructure

• Proces
s

• Proces

• Project
complian

• Project
administ

Infrastructure:

 An organization infrastructure provides human resource support, project-independent

research and development, and other capital software engineering assets. The typical components

of the organizational infrastructure are as follows

 Project Administration:

Time accounting system; contracts, pricing, terms and condition; corporate

information system integration.

 Engineering Skill Centers:

Custom tools repository and maintenance, bid and proposal support, ind3ependent

research and development.

 Professional Development:

Internal training boot camp, personnel recruiting, personnel skills database

maintenance, literature and assets library, technical publications.

Project Organizations and how it handle their teams?

A default project organization and maps project-level roles and responsibilities. The structure can

be tailored to the size and circumstances of the specific project organization. The main features of

the default organization are as follows.

 The project management team is an active participant, responsible for producing as well as

managing.

 The architecture team is responsible for real artifacts and for the integration of components,

not just for staff function.

 The development team owns the component construction and maintenance activities.

 Quality is everyone job, integrated into all activities and check points. Each team take

responsibility for a different quality perspective.

Software Management Team:

 Most project are over constrained. Schedules, cost, functionality and quality expectations

are highly inter related and require continuous negotiation among multiple stake holders who have

different goals. The software management team carries the burden of delivering with condition to

all stake holders. The software management team takes ownership of all aspects of quality.

Software Architecture Team:

 The software architecture team is responsible for the architecture. This responsibility

encompasses the engineering necessary to specify a complete bill of materials for the software and

the engineering necessary to make significant make/ buy trade-offs so that all custom components

are elaborated to the extent that construction/assembly costs are highly predictable.

 In most projects, the inception and elaboration phases will be dominated by two distinct

teams: the software management team and the software architecture team. To succeed, the

architecture must include a fairly broad level of expertise, including the following:

 Domain experience to produce an acceptable design view (architecturally significant

element s of the design model) and use case view (architecturally significant element s of

the use case model).

Software Management Team

 Artifacts

 Business

case
 Vision
 Software

development

plan
 Work

breakdown
structure

 Status

assessments
 Requirement

s set

 Systems
Engineering

 Financial
Administrati
on

Quality
Assurance

 Responsibilities

 Resource

commitments
 Personnel

assignments
 Plans,

priorities,
 Stakeholder

satisfaction
 Scope

definition
 Risk

management
 Project

control

Life-Cycle Focus

 Software technology experience to produce an acceptable process view(concurrency and

control thread relationships among the design, component, and deployment models),

component view (structure of the implementation set), and deployment view(structure of

the deployment set).

Software development team:

 The software development team is the most application specific group. In general, the

software development team comprise several sub teams dedicated to groups of components that

require a common skill set. The typical skill set include the following:

 Commercial component:

Specialists with detail knowledge of commercial components central to a system’s

architecture

 Database: specialists with experience in the organization, storage, and retrieval of data

 Graphical user interfaces: specialists with experience in the display organization, data

presentation, and user interaction.

 Operating systems and networking: specialist with experience in the execution of multiple

software objects on a network of hardware resources.

 Domain applications: specialists with experience in the algorithms, application processing.

Software Architecture Team

 Artifacts

 Architecture
description

 Requirement

s set
 Design set
 Release

specification

s

Demonstrat
ions

 Use-case
modelers

Design
modelers

 Performanc
e analysts

 Responsibilities

 Requirement
s trade-offs

 Design

trade-offs
 Component

selection
 Initial

integration
 Technical

risk solution

Life-Cycle Focus

The software development team is responsible for the quality of individual components,

including all component development, testing, and maintenance. Components tests should

be built as self-documented.

Software Assessment Team:

 There are two reasons for using an independent team for software assessment. It

has to do with ensuring an independent quality perspective. A more important reason for

using an independent test team is to exploit the concurrency of activities.

 A modern process should employ use-case-oriented or capability –based testing

(which may span many components). Organized as a sequence of builds and mechanized

via two artifacts.

 Release specification (the plan and evaluation criteria for a release)

 Release description(the results of a release)

Software Development Team

 Artifacts

 Design set
 Implementation

set
 Deployment set

 Component
teams Responsibilities

 Component design
 Component

implementation
 Component stand-

alone test
 Component

maintenance
 Component

documentation

Life-Cycle Focus

The evaluation of organizations

The project organization represents the architecture of the team and needs to evolve consistent

with the project plan captured in the work breakdown structure. The following figure illustrates

how the team’s centre of gravity shifts over the life cycle, with about 50% of the staff assigned to

one set of activities in each phase

 A different set of activities is emphasized in each phase, as follows:

 Inception team: an organization focused on planning, with enough support from the

other teams to ensure that the plans represent a consensus of all perspectives.

Software Assessment
Team Artifacts

 Deployme

nt set
 SCO

database
 User

manual
 Environme

nt
 Release

specificatio

ns
 Release

description

s
 Deployme

nt
documents

 Release
testing

 Change
managem
ent

Deployme
nt

 Environm
ent
support

 Responsibilitie
s

 Project

infrastruct

ure
 Independe

nt testing
 Requireme

nts
verification

 Metrics

analysis
 Configurati

on control
 Change

manageme

nt
 User

deploymen
t

Life-Cycle
Focus

 Elaboration team: an architecture focused organization in which the driving forces

of the project reside in the software architecture team and are supported by the

software development software assessment teams has necessary to achieve a stable

architecture baseline

 Construction team: a fairly balanced organization in which most of the activity

resides in the software development and software assessment teams

 Transition team: a customer focus organization in which usage feedback drives the

deployment activities.

The automation tools available for building blocks in software process

Many tools are available to automate the software development process. Most of

the core software development tools map closely to one of the process workflows,

as illustrated in the following figure. Each of the process workflows has a distinct

for automation support.

Management: there are many opportunities for automating the project planning and

control activities of the management work flows. Software cost estimating tools

and WBS tools are usual for generating the planning artifacts.

Environment: configuration management and version control are essential in a

modern interactive development process

Requirements: conventional approaches decomposed system requirements into

subsystems requirements, subsystem requirements into component requirement and

component requirements into unit requirements. In a modern project the system

requirements are captured in the vision statement. Lower levels of requirements are

driven the process organized by iteration rather than by lower level component.

Software
management

Software
assessment

Software
development

Software
architecture

Software
management

Software
assessment

Software
development

Software
architecture

Software
management

Software
assessment

Software
development

Software
architecture

Software
management

Software
assessment

Software
development

Software
architecture

Inception Elaboration

Transition Construction

Design: the primary support required for the design work flow is visual modeling,

which is used for capturing design models, presenting them in human readable

format, and translating them into source code. An architecture first and

demonstration based process is enabled by existing architecture components and

middle ware.

Implementation: the implementation work flow relies primarily on a programming

environment but must also include substantial integration with the change

management tools, visual modeling tools, and test automation tools to support

productive iteration.

Assessment and deployment: the assessment workflows require all the tools just

discussed as well as additional capabilities to support test automation and test

management. Defect tracking is another important that supports assessment.

The metrics for managing a modern process

Many different metrics may be of value in managing a modern process. There are seven core

metrics that should be used on all software projects. Three are management indicators and four are

quality indicators.

Management indicators:

1. Work and progress

2. Budgeted cost and expenditure

3. Staffing team dynamics

Quality indicators:

1. Change traffic and stability

2. Breakage and modularity

3. Rework and adaptability

4. Mean time between failure and maturity

METRIC PURPOSE PERSPECTIVES

Work and progress Iteration planning, plan

vs. actualS, management

indicator

SLOC, function points, object points,

scenarios, test cases, SCOs

Budget cost and

expenditures

Financial insight, plan vs.

actualS, management

indicator

Cost per month, full-time staff per

month, percentage of budget

expended

small scales projects Vs large scale projects

The lists elaborate some of the key differences in discriminators of success. None of

these process components is unimportant although some of them are more important

than others. ‘

 Design is key in both domains. Good design of a commercial product is a key

differentiator in the market place and is the foundation for efficient new product

releases.

 Management is paramount in large projects where the consequences of planning

errors , resource allocation errors, inconsistent stake holder expectation, and

other out of banlaned factors we can have catastrophic consequences for the

overall team dynamics

 Deployment plays a far greater role for a small commercial product because

there is a broad user base of diverse individuals and environments

Rank Large Complex

Project

Small

Commercial

Project

1 Management Design

2 Design Implementation

3 Requirements Deployment

4 Assessment Requirements

5 Environment Assessments

Staffing and team

dynamics

Resource plan vs. actuals,

hiring rate, attrition rate

People per month added, people per

month leaving

Change traffic and

stability

Iteration planning,

management indicator of

schedule convergence

Software changes

Breakage and

modularity

Convergence, software

scrap, quality indicator

Reworked SLOC per change, by

type, by

release/component/subsystem

Rework and

adoptability

Convergence, software

rework, quality indicator

Average hours per change, by type,

by release/component/subsystem

6 Implementation Management

7 Deployment Environment

UNIT -V

Risk:

“An uncertain event or condition that, if it occurs, has a positive or negative effect

on a project’s objectives. “

“The chance of exposure to the adverse consequences of future event. “

People may different terms but a key elements of a risk follow

 It relates to the future: The future is inherently uncertain.

 It involves cause and effect: a good definition of a specific risk identifies a

situation such as ‘inexperience staff’ and a particular type of outcome, such

as lower productivity.

The different categories of risk:

Project risk is those that could prevent the achievement of the objectives given to

the project managers and the project team.

Risk has been categorized in other ways. Kalle Lyytinen and his colleagues for

instance, have proposed a socio technical model of risk, a diagrammatic

representation.

The box labeled ‘actors’ refers to all the people involved in the development of the

application in question. The typical risk in this area is that high staff turnover leads

to information of value to the project being lost. For eg. If a software developer

build a software component and then leaves before it has been fully tested, the team

member taking over that component might find that their lack of familiarity with

the software makes diagnosis and correction of faults difficult.

The box labeled ‘technology’ encompasses both the technology used to implement

the application and that embedded in the delivered product. Risk here could relate

to the appropriateness of the technologies and to possible fault within them,

especially if the novel.

The box labeled ‘structure’ describes the management structure and system. For eg.

The implementation we need the user to carry out come take, but a responsibility for

managing the user contribution to the project might not have been clearly allocated.

The box labeled ‘task’ in the same diagram related to the work to be carried out. Each box

is linked to all the remaining boxes.

1. Dealing the risk:

Planning for risk includes these steps:

1. Risk identification

2. Risk analysis and prioritization

3. Risk planning

4. Risk monitoring

 The two main approaches to the identification of risks are the use of the check list and

brainstorming.

Checklists:

Checklists are simply list of the risk that has been found to occur regularly in software development

project. Two check list-that of Lyytinen and his colleagues and the ISPL/Euro method model-

have already been mentioned, but other exists including a specialized list of software development

risk by Barry Boehm- a modified version which is appearing in the following table.

Risk Risk reduction techniques

 Personnel shortfalls Staffing with top talent; job matching;
teambuilding; training and career development;
early scheduling of key personnel

 Unrealistic time and
cost estimates

 Multiple estimation techniques; design to cost;
incremental development; recording and analysis
of past projects; standardization of methods

Actors

Technology

Tasks

Structure

Brainstorming:

Representatives of the main stakeholders can e bought together, ideally, once some kind of

preliminary plan has been drafted then identifies using their individual knowledge of different

parts of the project, the particular problem that might occur. Brainstorming can also been used to

identify the possible solution to the problems that emerge. One useful outcome of such an approach

is that we collaborative approaches may generate the sense of owner ship in the project. The

process that is beneficial explicitly asked stakeholders about their anxieties and then explores way

of reducing those concerns.

Casual mapping:

 Developing the wrong
software functions

 Improved software evaluation; formal specification
methods; user surveys; prototyping; early user
manuals

 Developing the wrong
user interface

 Prototyping; task analysis; user involvement

 Personnel shortfalls Staffing with top talent; job matching;
teambuilding; training and career development;
early scheduling of key personnel

 Unrealistic time and
cost estimates

 Multiple estimation techniques; design to cost;
incremental development; recording and analysis
of past projects; standardization of methods

 Developing the wrong
software functions

 Improved software evaluation; formal specification
methods; user surveys; prototyping; early user
manuals

 Developing the wrong
user interface

 Prototyping; task analysis; user involvement

 The idea here is to get the major stakeholders together and to brainstorm collectively the

things that could go wrong. The causes of the problems identified are traced back using the

mapping technique which identifies the project factors (or ‘concept variables’) that people

see as being important and the causal links between them. These links can be positive or

negative.

 Where possible, for each factor, positive and negative aspects are identified e.g.

‘stable…unstable requirements’.

 Once a causal map has been drawn up identifying possible negative outcomes and their

causes, the map can be modified to introduce policies or interventions which should reduce

or mitigate the effects of the negative outcomes.

 Often a risk reduction activity can actually introduce new risks. The use of consultants to

offset the effects of skill shortages is an example of this. Causal mapping can help identify

such adverse side-effects.

Risk assessment:

 The common problem with risk identification, particularly for the more anxious, is that a

list of risk is potentially endless. Some way is therefore needed of distinguishing the more

damaging and likely risks. This can be done by estimating the risk exposure for each risk

using the formula:

 Risk exposure (RE) = (potential damage) x (probability of occurrence)

 If there were 100 people chipping in $5,000 each, there would be enough for the 1 in 100

chance of the flooding. If there were 2 floods then the system collapses!

Risk planning:

Risks can be dealt with by:

• Risk acceptance – the cost of avoiding the risk may be greater than the actual cost of the

damage that might be inflicted

• Risk avoidance – avoid the environment in which the risk occurs e.g. buying an OTS

application would avoid a lot of the risks associated with software development e.g. poor

estimates of effort.

• Risk reduction – the risk is accepted but actions are taken to reduce its likelihood e.g.

prototypes ought to reduce the risk of incorrect requirements

• Risk transfer – the risk is transferred to another person or organization. The risk of incorrect

development estimates can be transferred by negotiating a fixed price contract with an

outside software supplier.

• Risk mitigation – tries to reduce the impact if the risk does occur e.g. taking backups to

allow rapid recovery in the case of data corruption

Evaluate the risks with PERT technique

 1. Applying the PERT Technique:

 The method is very similar to the CPM technique but instead of using a single

estimate for the duration of each tack, pert requires three estimates.

 Most likely time (m) the time we would expect the task to take normally

 Optimistic time (a) the shortest time could be realistically be expected

 Pessimistic (b) worst possible time (only 1% chance of being worse, say)

Some straightforward activities might have little uncertainty and therefore have a low standard

deviation, while others have more uncertainty and would have a bigger standard deviation.

Pert then combines these three estimates to form a single expected duration using the formula:

‘expected time’ te = (a + 4m +b) / 6

A quantitative measure of the degree of uncertainity of activity duration estimate may be

obtained by calculating the standard deviation S of an activity time using the formula:

‘activity standard deviation’ S = (b-a)/6

Activity Optimistic Most
likely

Pessimistic Expected Standard

deviation

(a) (m) (b) (te) (s)

A 5 6 8 6.17 0.50

B 3 4 5 4.00 0.33

C 2 3 3 2.83 0.17

D 3.5 4 5 4.08 0.25

E 1 3 4 2.83 0.50

F 8 10 15 10.50 1.17

G 2 3 4 3.00 0.33

H 2 2 2.5 2.08 0.08

The PERT technique uses the following three step method for calculating the

probability of meeting or missing a target date:

 Calculate the standard deviation of each project event;

 Calculate the z value for each event that has a target date;

 Convert z values to a probabilities.

Calculate the z value thus

 z = (T – te)/s

Where te is the expected date and the T the target date.

The z value for event 4 is (10-9.00)/0.53=1.8867.

There is about a 17% chance of not meeting the target of 52 days.

	SHRIMATI INDIRA GANDHI COLLEGE
	Affiliated to Bharathidasan University| Nationally Accredited at ‘A’ Grade(3rd Cycle) by NAAC
	An ISO 9001:2015 Certified Institution
	Thiruchirrappalli
	STUDY MATERIAL
	SOFTWARE ENGINEERING
	DEPARTMENT OF COMPUTER SCIENCE, INFORMATION TECHNOLOGY AND COMPUTER APPLICATIONS
	Prepared by,
	MS.T.R.B.VIDHYA, M.S.I.T.,M.Phil.,M.C.A.,
	ASST. PROF. IN COMPUTER SCIENCE,
	SHRIMATI INDIRA GANDHI COLLEGE,
	TIRUCHIRAPPALLI - 2

